Abstract
As a promising renewable energy resource, pressure retarded osmosis (PRO) is developing rapidly. Under the fluctuating environmental condition, fewer oscillations and higher convergence speeds are necessary for a stable operation of the PRO system and higher energy extraction. Metaheuristic algorithms are potential techniques for PRO at an accelerating rate, but the balance between the exploitation and exploration process is an inherent challenge in real-time efficiency and accuracy. In this work, a differential evolution (DE) based henry gas solubility optimization (EHO) is proposed for the scaled-up PRO module based on experimental data with respect to varying operational situations. In EHO, the DE mechanism and levy flight technique are applied to enhance the reliability and effectiveness of the classic HGSO strategy. The most advanced intelligent algorithms, including DFOA, GWO and WOA, are conducted for competitive research for verification purposes. Moreover, the superiority of the proposed algorithm has been evaluated and validated in complex operational environments under variations in temperature, draw concentrations and flow rates levels. The modelling results indicate that compared with the classic HGSO method, the proposed method leads to an improvement of the extracted specific energy of the PRO system by an astonishing 84.21%, 111.11% and 175.03%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.