Abstract

We introduce a novel framework for simulating spin models using differentiable programming, an approach that leverages the advancements in machine learning and computational efficiency. We focus on three distinct spin systems: the Ising model, the Potts model, and the Cellular Potts model, demonstrating the practicality and scalability of our framework in modeling these complex systems. Additionally, this framework allows for the optimization of spin models, which can adjust the parameters of a system by a defined objective function. In order to simulate these models, we adapt the Metropolis-Hastings algorithm to a differentiable programming paradigm, employing batched tensors for simulating spin lattices. This adaptation not only facilitates the integration with existing deep learning tools but also significantly enhances computational speed through parallel processing capabilities, as it can be implemented on different hardware architectures, including GPUs and TPUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.