Abstract

We study a class of Gaussian random fields with negative correlations. These fields are easy to simulate. They are defined in a natural way from a Markov chain that has the index space of the Gaussian field as its state space. In parallel with Dynkin's investigation of Gaussian fields having covariance given by the Green's function of a Markov process, we develop connections between the occupation times of the Markov chain and the prediction properties of the Gaussian field. Our interest in such fields was initiated by their appearance in random matrix theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.