Abstract
In this study, a reliable method was established for the absolute quantification of metabolite concentrations in human seminal plasma using ERETIC2, a quantification tool developed by Bruker based on the PULCON principle. The performance of the ERETIC2 was examined using an AVANCE III HD NMR spectrometer (600 MHz) equipped with a triple inverse 1.7 mm TXI probe in terms of some experimental parameters that may affect the accuracy and precision of the quantitative results. Then, the accuracy, precision, and repeatibility of ERETIC2 were determined using L-asparagine solutions at different concentrations. And it was evaluated by comparing it with the classical internal standard (IS) quantification method. The relative standard deviation (RSD) values for ERETIC2 were calculated in the range of 0.55–1.90% and the minimum recovery value was 99.9%, while the RSD values for the IS method were calculated in the range of 0.88–5.83% and recovery value was minimum 91.0%. Besides, the RSD values of the inter-day precisions for the ERETIC2 and IS methods were obtained to be in the range of 1.25 − 3.03% and 0.97 − 3.46%, respectively. Finally, the concentration values of seminal plasma metabolites were determined using different pulse programs with both methods for samples obtained from normozoospermic control and azoospermic patient groups. The results proved that this quantification method developed using NMR spectroscopy is easy to use in complex sample systems such as biological fluids and is a good alternative to the classical internal standard method in terms of accuracy and sensitivity. In addition, the improvement of the spectral resolution and sensitivity with the microcoil probe technology and the possibility of analyzing with minimum sample quantities has contributed positively to the results of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.