Abstract

In recent years the composites materials gained a major importance in all fields of engineering, because they offer a successful replacement for classical materials conferring similar elastic-mechanical properties to metal or non-metal alloys presenting several advantages such as reduced mass, chemical resistance etc. Considering this, during the design, dull knowledge of the elastic-mechanical characteristics is of high importance. The present paper aims to create a finite element model able to predict the shear elastic modulus of a double-layered composite material based on the elastic characteristics of its constituents. For this, once the elastic characteristics of the constituents determined, they could be used in the finite element analysis obtaining consequently the shear modulus for the composite material. Also, the shear elastic modulus of the resultant composite was determined experimentally. The results of the finite element model were compared to the experimental values in order to validate the finite element analyses results. Keywords: composites, fiberglass, shear modulus, FEM

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.