Abstract

This paper considers a banking loan model using a difference equation with a nonlinear deposit interest rate. The construction of the model is based on a simple bank balance sheet composition and a gradient adjustment process. The model produces two unstable loan equilibriums and one stable equilibrium when the parameter corresponding to the deposit interest rate is situated between its transcritical and flip bifurcations. Some numerical simulations are presented to align with the analytical findings, such as the bifurcation diagram, Lyapunov exponent, cobweb diagram, and contour plot sensitivity. The significance of our result is that the banking regulator may consider the lower and upper bounds for setting the nonlinear interest rate regulation and provide a control regulation for other banking factors to maintain loan stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.