Abstract

The high concentration of macromolecules in cells affects the stability of proteins and protein complexes via hard repulsions and chemical interactions, yet few studies have focused on chemical interactions. We characterized the domain-swapped dimer of the B1 domain of protein G in buffer and Escherichia coli cells by using heteronuclear, multidimensional nuclear magnetic resonance spectroscopy. In buffer, the monomer is a partially folded molten globule, but that species is not observed in cells. Experiments using urea suggest that the monomer is unfolded in cells, but again, the molten-globule form of the monomer is absent. The data suggest that attractive chemical interactions in the cytoplasm unfold the molten globule. We conclude that the intracellular environment not only modulates the stability of protein complexes but also can change the species present, reinforcing the idea that chemical interactions are more important than hard repulsions in cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.