Abstract

An application of a mode dielectric resonator is described for precise measurements of complex permittivity and the thermal effects on permittivity for isotropic dielectric materials. The Rayleigh-Ritz technique was employed to find a rigorous relationship between permittivity, resonant frequency, and the dimensions of the resonant structure, with relative computational accuracy of less than . The influence of conductor loss and its temperature dependence was taken into account in the dielectric loss tangent evaluation. Complex permittivities of several materials, including cross-linked polystyrene, polytetrafluoroethylene, and alumina, were measured in the temperature range of 300-400 K. Absolute uncertainties of relative permittivity measurements were estimated to be smaller than 0.2%, limited mainly by uncertainty in the sample dimensions. For properly chosen sample dimensions, materials with dielectric loss tangents in the range of to can be measured using the mode dielectric resonator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.