Abstract

One-dimensional (1D) nanostructured materials have attracted a great deal of interest owing to their potential applications in various industries. Due to the limitations and cost associated with conventional low-pressure plasma systems, atmospheric-pressure plasma techniques such as dielectric barrier discharges (DBDs) are investigated as an alternative approach for inducing specific chemical reactions. RuO2 nanomaterials are widely used as supercapacitor electrodes, in field-emission devices and for catalytic applications. In such applications, size and shape dependent properties of nanomaterials play critical roles in improving the performance. In this paper, an attempt is made to prepare 1D RuO2 nanostructured materials using a DBD plasma. It is reported here that the composition of feed gas is an important factor in determining the final morphology. For example, an Ar + H2 plasma yields aggregated RuO2 nanostructures, whereas ‘nanopillar’ and ‘nanorod’ morphologies are obtained when using Ar + O2 and Ar, respectively. Possible mechanisms behind the morphological differences are elucidated on the basis of the temperature variations inside the plasma reactor and the chemistry of the gaseous reactive species. The application of a DBD plasma to the synthesis of RuO2 nanorods is reported for the first time in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.