Abstract

Exciton binding energy (Eb) is understood as the energy required to dissociate an exciton in free-charge carriers, and is known to be an important parameter in determining the performance of organic opto-electronic devices. However, the development of a molecular design to achieve a small level of Eb in the solid state continues to lag behind. Here, to investigate the relationship between aggregation and Eb, star-shaped π-conjugated compounds DBC-RD and TPE-RD were developed using dibenzo[g,p]chrysene (DBC) and tetraphenylethylene (TPE). Theoretical calculations and physical measurements in solution showed no apparent differences between DBC-RD and TPE-RD, indicating that these molecules possess similar properties on a single-molecule level. By contrast, pristine films incorporating these molecules showed significantly different levels of electron affinity, ionization potential, and optical gap. Also, DBC-RD had a smaller Eb value of 0.24 eV compared with that of TPE-RD (0.42 eV). However, these molecules showed similar Eb values under dispersed conditions, which suggested that the decreased Eb of DBC-RD in pristine film is induced by molecular aggregation. By comparison with TPE-RD, DBC-RD showed superior performances in single-component organic solar cells and organic photocatalysts. These results indicate that a molecular design suitable for aggregation is important to decrease the Eb in films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.