Abstract

Diatom-based models to infer nutrient concentrations are proven robust indicators, but evidence suggests that in the future these models will be little improved by using larger training sets. I present a simple means to summarize the water quality (WQ) data from a suite of coastal Great Lakes locations and develop a diatom-based WQ model using standard weighted-averaging methods. A onedimensional WQ index was derived by summarizing measured environmental data (nutrients, pigments, solids) using dimension-reducing ordination and calculating the primary WQ gradient of interest. Evaluations of weighted-averaging diatom model predictions (WQ index model: r 2 jackknife = 0.62, RMSEP = 1.32) indicate that the model has reconstructive power similar to a comparative model for total phosphorus concentrations (TP model: r 2 jackknife = 0.65, RMSEP = 0.26 log[μg/L + 1]), but that predictive bias was lower for the WQ model. Also, inferred WQ index data had a higher correlation to adjacent watershed characteristics than inferred TP data. We attribute this to the ability of an integrated WQ index to better characterize the overall quality of a site than a single nutrient variable such as phosphorus. The diatom-based WQ model may be advantageous for management where it is necessary to provide a summary inference of water quality condition at a coastal locale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.