Abstract

Covalent immobilization of antibacterial peptides (APs) onto silk protein-based materials has always been a challenge due to the lack of green and efficient macromolecular cross-linkers. Here, we proposed a dialdehyde polysaccharide cross-linker oxidized from pullulan for grafting a natural AP protamine (PM) onto silk fiber surface through a simple cold pad-batch process. The oxidized pullulan (OP) was linked to silk fiber surface through Schiff reaction and used for mediated cross-linking of PM also via Schiff base linkages. This modification introduced abundant PM guanidine groups on the fiber leading to much-desired antibacterial activity, and considerable improvement in the moisture transfer properties and shade depth. FTIR, XPS, SEM studies confirmed the presence of PM and the cross-linking structure between the polysaccharide and peptides on the fiber surfaces. The antibacterial activity imparted by this process was retained even after 20 washing and 50 rubbing cycles proving versatility and durability. Further, the process did not affect other critical silk properties such as appearance, tensile strength, biological safety, etc. Immobilization of PM onto silk fibers through this novel green polysaccharide cross-linker makes silk more appealing and usable and could also enlighten the attempts of cross-linking other protein materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.