Abstract
BackgroundTo develop a diagnostic tree analysis (DTA) model based on demographical information and conventional MRI for differential diagnosis of adult pilocytic astrocytomas (PAs) and high-grade gliomas (HGGs; World Health Organization grade III-IV). MethodsA total of 357 adult patients with pathologically confirmed PA (n = 65) and HGGs (n = 292) who underwent conventional MRI were included. The patients were randomly divided into training (n = 250) and validation (n = 107) datasets to assess the diagnostic performance of the DTA model. The DTA model was created using a classification and regression tree algorithm on the basis of demographical and MRI findings. ResultsIn the DTA model, tumor location (on cerebellum, brainstem, hypothalamus, optic nerve, or ventricle), cystic mass with mural nodule appearance, presence of infiltrative growth, and major axis (cutoff value, 2.9 cm) were significant predictors for differential diagnosis of adult PAs and HGGs. The AUC, accuracy, sensitivity, and specificity were 0.94 (95% confidence interval 0.86–1.00), 96.2%, 89.5%, and 97.7%, respectively, in the test set. The accuracy of the DTA model was significantly higher than the no-information rate in the test (96.2 % vs 85.0%, P < 0.001) set. ConclusionThe DTA model based on MRI findings may be useful for differential diagnosis of adult PA and HGGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.