Abstract
Regression mixture models are becoming more widely used in applied research. It has been recognized that these models are quite sensitive to underlying assumptions, yet many of these assumptions are not directly testable. We discuss a diagnostic tool based on reconstructed residuals that can help uncover violations of model assumptions. These residuals are found by using the posterior probability of class membership to assign, based on a multinomial distribution, a class to each observation. Standard residual checks can be applied to these posterior draw residuals to explore violations of the model assumptions. We present several illustrations of the diagnostic tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.