Abstract

Pulmonary fat embolism (PFE) as a cause of death often occurs in trauma cases such as fractures and soft tissue contusions. Traditional PFE diagnosis relies on subjective methods and special stains like oil red O. This study utilizes computational pathology, combining digital pathology and deep learning algorithms, to precisely quantify fat emboli in whole slide images using conventional hematoxylin-eosin (H&E) staining. The results demonstrate deep learning's ability to identify fat droplet morphology in lung microvessels, achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.98. The AI-quantified fat globules generally matched the Falzi scoring system with oil red O staining. The relative quantity of fat emboli against lung area was calculated by the algorithm, determining a diagnostic threshold of 8.275% for fatal PFE. A diagnostic strategy based on this threshold achieved a high AUC of 0.984, similar to manual identification with special stains but surpassing H&E staining. This demonstrates computational pathology's potential as an affordable, rapid, and precise method for fatal PFE diagnosis in forensic practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.