Abstract
N-Nitrosamines are strictly regulated in pharmaceutical products due to their carcinogenic nature. Therefore, the ability to rapidly and reliably identify the N-nitroso functionality is urgently needed. Unfortunately, not all ionized N-nitroso compounds produce diagnostic fragment ions and hence tandem mass spectrometry based on collision-activated dissociation (CAD) cannot be used to consistently identify the N-nitroso functionality. Therefore, a more reliable method was developed based on diagnostic functional-group selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer. 2-Methoxypropene (MOP) was identified as a reagent that reacts with protonated N-nitrosamines in a diagnostic manner by forming an adduct followed by the elimination of 2-propenol (CH3C(OH)═CH2]). From 18 protonated N-nitrosamine model compounds studied, 15 formed the diagnostic product ion. The lack of the diagnostic reaction for three of the N-nitrosamine model compounds was rationalized based on the presence of a pyridine ring that gets preferentially protonated instead of the N-nitroso functionality. These N-nitrosamines can be identified by subjecting a stable adduct formed upon ion-molecule reactions with MOP to CAD. Further, the ability to use ion-molecule reactions followed by CAD to differentiate protonated O-nitroso compounds with a pyridine ring from analogous N-nitrosamines was demonstrated This methodology is considered to be robust for the identification of the N-nitroso functionality in unknown analytes. Lastly, HPLC/MS2 experiments were performed to determine the detection limit for five FDA regulated N-nitrosamines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.