Abstract

Complex engineering systems have to be carefully monitored to meet demanding performance requirements, including detecting anomalies in their operations. There are two major monitoring challenges for these systems. The first challenge is that information collected from the monitored system is often partial and/or unreliable, in the sense that some occurred events may not be reported and/or may be reported incorrectly (e.g., reported as another event). The second is that anomalies often consist of sequences of event patterns separated in space and time. This paper introduces and analyzes a diagnoser algorithm that meets these challenges for detecting and counting occurrences of anomalies in engineering systems. The proposed diagnoser algorithm assumes that models are available for characterizing plant operations (via stochastic automata) and sensors (via probabilistic mappings) used for reporting partial and unreliable information. Methods for analyzing the effects of model uncertainties on the diagnoser performance are also discussed. In order to select configurations that reduce sensor costs, while satisfying diagnoser performance requirements, a sensor configuration selection algorithm developed in previous work is then extended for the proposed diagnoser algorithm. The proposed algorithms and methods are then applied to a multi-unit-operation system, which is derived from an actual facility application. Results show that the proposed diagnoser algorithm is able to detect and count occurrences of anomalies accurately and that its performance is robust to model uncertainties. Furthermore, the sensor configuration selection algorithm is able to suggest optimal sensor configurations with significantly reduced costs, while still yielding acceptable performance for counting the occurrences of anomalies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.