Abstract
The linear minimum mean square error (LMMSE) channel estimation technique is often employed in orthogonal frequency division multiplexing (OFDM) systems because of its optimal performance in the mean square error (MSE) performance. However, the LMMSE method requires cubic complexity of order O(N 3 p ), where Np is the number of pilot subcarriers. To reduce the computational complexity, a discrete Fourier transform (DFT) based LMMSE method is proposed in this paper for OFDM systems in the frequency selective channel. To validate the proposed method, the closed form mean square error (MSE) expression is also derived. Finally, a computer simulation is carried out to compare the performance of the proposed LMMSE method with the classical LS and LMMSE methods in terms of bit error rate (BER) and computational complexity. Results of the simulation show that the proposed LMMSE method achieves exactly the same performance as the conventional LMMSE method, with much lower computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Telecommunictions and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.