Abstract

The excited‐state intramolecular proton transfer (ESIPT) mechanism of a new compound (E)‐1‐((2,2‐diphenylhydrazono)methyl)naphthalen‐2‐ol (EDMN) sensor, reported and synthesized by Mukherjee et al. [Sensors Actuat. B‐Chem. 2014, 202, 1190], is investigated in detail theoretically. The calculations on primary bond lengths, bond angles, and the corresponding infrared (IR) vibrational spectra and hydrogen‐bond energy involved in intramolecular hydrogen bond between the S0 and S1 states confirm that the intramolecular hydrogen bond is strengthened in the S1 state, which reveals the tendency of ESIPT reaction. The fact that the experimental absorption and emission spectra are well reproduced demonstrates the rationality and effectiveness of the time‐dependent density functional theory (TDDFT) level of theory we adopt here. Furthermore, intramolecular charge transfer based on the frontier molecular orbitals (MOs) gives indication of the ESIPT reaction. The constructed potential energy curves of both the S0 and S1 states while keeping the O─H distance of EDMN fixed at a series of values are used to illustrate the ESIPT process. The lower barrier of ~3.934 kcal/mol in the S1 state potential energy curve (lower than the 8.254 kcal/mol in the S0 state) provides the transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.