Abstract

Using B3LYP and B97D functionals of density functional theory (DFT), homochiral and heterochiral cyclic trimerization of imidazole based heterocyclic amino acids are studied in gas phase and solvent phase, i. e., Acetonitrile. Both the functionals show that formation of homochiral cyclic tripeptide is thermodynamically and kinetically favorable over its heterochiral counterpart in gas phase. The functional, B97D, decreases the height of reaction barriers significantly compared to those predicted by the functional B3LYP. The reaction pathways explored using PCM implicit solvent model show reduced kinetic favorability for formation of the homochiral cyclic tripeptide over its heterochiral counterpart. The results are substantiated by structural aspects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.