Abstract
The new annulation reaction of trichloronitroethylene with aniline results in the formation of a quinoxalinone-N-oxide derivative. The mechanism of this one-pot annulation reaction between trichloronitroethylene (TCNiE) and anilines has been extensively investigated with B3LYP/6-31+G** methodology. Five different paths (1-5) were proposed and modeled by using this method. These paths were compared in terms of the activation energies of their rate-determining steps and in regard to the experimental findings. Paths 3 and 5, proceeding via four-membered heterocyclic rings, were found to be the most plausible paths with activation energies of 32 and 29 kcal/mol for the rate-determining steps, respectively. The effects of substituent, solvent, temperature, and computational method on these steps were also investigated. The results showed that path 5 is the most plausible mechanism for the annulation reaction of trichloronitroethylene with aniline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.