Abstract

Deoxyribonucleic acid (DNA) sequencing is a crucial issue for the cure of different kinds of diseases. Here, we computationally explored the effect of DNA nucleobases on the electronic properties and electrical conductivity of a zigzag (10,0) C3N nanotube (C3NNT) at B3LYP-gCP-D3 level of theory. Our calculations revealed that the binding energy of nucleobases shows the order of guanine (G) > cytosine (C) > thymine (T) > adenine (A). Based on the energy decomposition analysis (EDA), the G, C, and T strongly interact with the C3NNT, but the A nucleobase adsorbed mainly via electrostatic attraction and dispersion forces. We exposed that the nucleobase size and its carbonyl group determine its adsorption behavior. The DNA nucleobase adsorption meaningfully increased the electrical conductivity of C3NNT. The C3NNT sensing response toward G, C, T, or A was predicted to be 131, 66, 60, or 10. Therefore, the C3NNT might be applied to selectively detect the G, C, T, and A. Our findings expose the usefulness of C3NNT as a next-generation DNA sequencer, suggesting new leads for future progresses in sustainable designs, superior sensing architectures, and bioelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call