Abstract

In the 1,3-dipolar cycloaddition of glyoxylic nitrones with electron-poor and electron-rich alkenes, the configurational instability of the nitrone leads to parallel models when regio- and stereoselectivities are rationalized. The energetics of the cycloaddition reactions have been investigated through molecular orbital calculations at the B3LYP/6-31-G(d) theory level. By studying different reaction channels and reagent conformations, leading to a total of sixteen transition structures for each dipolarophile, the regio- and stereochemical preferences of the reaction are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call