Abstract

The structural, electronic, mechanical and thermodynamic properties of the perovskite oxide BaAmO3 have been predicted using the full-potential linearized augmented plane wave (FP-LAPW) method. The equilibrium lattice constant, bulk modulus and pressure derivative were computed using different exchange correlations. The optimization of structure was carried out in ferromagnetic, anti-ferromagnetic and non-magnetic states, and the compound was found to be stable in the ferromagnetic state. A systematic study on the band structure and density of states was accomplished using generalized gradient approximation (GGA), Hubbard approximation (GGA + U) and modified Becke–Johnson exchange potential (mBJ),and the compound was found to have a half-metallic nature in all the approximations. The calculated total spin magnetic moment was found to be 5 μ B in all the approximations used. The second-order elastic constants, Young modulus, shear modulus, Poisson ratio and anisotropic factor have also been calculated. In order to have a complete understanding of BaAmO3, the thermodynamic properties were studied in the pressure range of 0 to 40 GPa and the temperature range extending from 0 to 600 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call