Abstract

First principles calculations were employed to study the structural, electronic and optical properties of Indium based cubic perovskite materials, specifically focusing on InBeF3 and InCaF3 compounds. The generalized gradient approximation Perdew–Burke–Ernzerhof (GGA_PBE) approximation and Tran–Blaha modified Becke–Johnson (TB-mBJ) approximations were used to study and compare the electronic and optical properties. The compound InBeF3 is predicted to have an indirect band gap of 2.51 eV in GGA_PBE and 2.96 eV in TB-mBJ. InCaF3 is found to have a direct wide band gap of 3.61 eV in GGA_PBE and 4.37 eV in TB-mBJ approximation. The partial density of states predicts the significance of In-5p and F-2p states in the conduction and valence bands, respectively. The dielectric constants decrease under the TB-mBJ approximation, with InCaF3 demonstrating lower values owing to its larger band gap. Optical activity analysis indicates transparency for both compounds with notable absorption peaks, suggesting potential applications in transparent coatings. Refractive indices decrease with photon energy, with values dropping below 1.0 in the TB-mBJ approximation, indicating superluminal behavior in wave propagation. The drop in refractive index value below1.0 is earlier for InCaF3 than InBeF3. Examination of the extinction coefficient reveals UV absorption peaks, indicating potential for optoelectronic applications. From this study it can be noticed that the compounds under study can be used for optoelectronic applications, supported by their predicted structural and optical properties study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call