Abstract

A DFT study on the palladium-bisphosphine catalyzed alkoxycarbonylation and aminocarbonylation of alkyne (propyne) is reported. The theoretical study explores the feasibility and the regioselectivity control of two independent mechanisms: the first is based on the active intermediate [Pd(II)(P 2)(H)] + (where P 2 = PH 2CH 2CH 2CH 2CH 2PH 2) for the alkoxycarbonylation reaction, and the second is based on the active species [Pd(II)(P 2)(NR 2)] + for the aminocarbonylation reaction. The study explains the role of solvent in increasing the yield and in controlling the selectivity of reaction to produce selectively the trans isomer in the alkoxycarbonylation reaction (hydride cycle) and the gem isomer in the aminocarbonylation reaction (amine cycle). In hydride cycle, the regioselectivity is mainly determined by the stability of the complex [Pd(II)(P 2)(COC 3H 5)(CH 3CN)] +; however, for the amine cycle, the regioselectivity is determined by the stability of the complex [Pd(II)(P 2)(C 3H 5CON(CH 3) 2)] +. The calculations reveal that ligand simplification is not valid in addressing the regioselectivity behavior of alkoxycarbonylation and aminocarbonylation reactions. The kinetic data for the formation of the two key complexes show no difference between the gem and trans isomers which predict the regioselectivity to be a thermodynamically controlled process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.