Abstract

AbstractIn the present work a systematic study was carried out to understand the influence of Sc doping on electronic and optical properties of CdS nanoparticles. The geometry optimization and symmetry computation for CdS and Sc doped CdS nanoparticles using Density Functional Theory (DFT) on B3LYP level with the QZ4P for Cd and DZ2P for sulphur and Sc were performed by Amsterdam Density Functional (ADF). The results show that HOMO-LUMO gap as well as electronic and optical properties of CdS clusters vary with Sc doping. The HOMO-LUMO gap is affected by the dopant and its value decreases to 0.6 eV. Through considering the numerical integration scheme in the ADF package, we investigated different vibrational modes and our calculated Raman and IR spectra are consistent with the reported result. The calculated IR and Raman peaks of CdS and Sc doped CdS clusters were in the range of 100 to 289 cm−1, 60 cm−1 to 350 cm−1 and 99 cm−1 to 282 cm−1, 60 cm−1 to 350 cm−1, respectively, which was also confirmed by experiment as well as a blue shift occurrence. Subsequently, for deeper research of pure and doped CdS clusters, their absorption spectra were calculated using time-dependent DFT method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call