Abstract

Cluster models for sites on the {1 1 1} surface of Fe 3O 4 were used to study the strength of bonding of water-gas shift intermediates using density functional theory. Three site models were used, representing an unpromoted catalyst, a catalyst where copper cations substitute for iron cations below the surface and a catalyst where copper cations substitute in the surface. The strengths of bonding of oxygen, carbon dioxide, dissociated water and dissociated formic acid were all observed to decrease by less than 20 kJ mol −1 when copper substituted below the surface, but they decreased by 60–80 kJ mol −1 when copper substituted in the surface of the catalyst. A minimum energy structure for molecularly adsorbed water was not identified because all attempts to do so resulted in dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.