Abstract

We present a detailed mechanism for the conversion of DMF (2,5-dimethylfuran) and ethylene to p-xylene, obtained by gas-phase DFT electronic structure calculations. The conversion consists of Diels–Alder cycloaddition and subsequent dehydration of the cycloadduct, an oxa-norbornene derivative. We present the energetics of both the uncatalyzed and acid-catalyzed (Brønsted and Lewis) reactions. Even though the DMF–ethylene cycloaddition is thermally feasible, we show that Lewis acids can further lower the activation requirements by decreasing the HOMO–LUMO gap of the addends. The catalytic effect may be significant or negligible depending on whether the Diels–Alder reaction proceeds in the normal or the inverse electron-demand direction. We also show that Brønsted acids are extremely effective at catalyzing the dehydration of the oxa-norbornene derivative, which, according to our calculations, cannot proceed uncatalyzed. On the other hand, we conclude that Brønsted acids do not catalyze the cycloaddition. Although strong Lewis acids like Li+ can catalyze the dehydration, our calculations indicate that relatively elevated temperatures would be required as they are not as effective as Brønsted acids. We argue that the specific synthetic route to p-xylene is kinetically limited by the Diels–Alder reaction when Brønsted acids are used and by the dehydration when a Lewis acid is used, with the latter being slower than the former. Finally, we adduce experimental data that corroborate the theoretical predictions: we observe no activity in the absence of a catalyst and a higher turnover frequency to p-xylene in the Brønsted acidic zeolite HY than in the Lewis acidic zeolite NaY.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.