Abstract
The current research uses density functional theory (DFT) approximations in conjunction with the plane wave-pseudopotential method to investigate structural, electronic, and optical properties of Pb-free cubic perovskite RbGeX3 (X= I, Br and Cl) materials. More specifically, Norm-conserving pseudopotential has been employed to describe the ion and valence electrons interaction, and Perdew-Burke-Ernzerhof (PBE) flavor is used to represent the exchange-correlation part of the energy of the GGA approximation. Our calculated lattice constants are 5.95, 5.55, and 5.29 Å for RbGeX3 (where X=I, Br, and Cl), respectively, and they are of are in good agreement with available empirical and other values. The band structure shows the direct band gap nature of the three compounds under research here and our values of the band gap energy E_g are in good agreement with the other available results. Materials under research show response to the electromagnetic radiation starting from the infrared region to the very high energies (~33 eV). The RbGeI3 has the lowest E_g value at the low region energies and the highest optical response peaks but RbGeCl3 has the highest optical response peaks at energies located near ~20 eV. Our results show that these materials are good candidates for photo electronic applications including solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.