Abstract

Methyldiazonium ion ( ) is an ultimate carcinogen that can methylate multiple sites in DNA/RNA. In present contribution, density functional theory calculations using the B3LYP and M06‐2X functionals and the 6‐31G(d,p) and aug‐cc‐pVDZ basis sets are carried out to study methylation reactions of at the different nucleophilic sites of DNA/RNA bases and their nucleosides. Total 12 nucleophilic sites, that is, the N2, N3, N7, and O6 sites of guanine; the N1, N3, N6, and N7 sites of adenine; O2 and N3 sites of cytosine and the O2 and O4 sites of thymine and uracil have been considered for study. Thus, a total of 30 reactions have been studied here. The polarizable continuum model is used for solvation calculations. The N7 site of guanine, N7(G), is found to be most reactive in all the reactions studied here, which is in agreement with experiment. However, the calculated reactivity of toward the N7(G) site in aqueous media follows the order: guanine > deoxyguanosine > guanosine. The reactivities of many other sites including the O6(G), O2(C), and N3(A) sites are also modified in going from DNA/RNA bases to their nucleosides and from DNA to RNA nucleosides. Thus, we note that the presence of sugar moiety significantly modifies the methylation pattern of bases caused by . © 2014 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.