Abstract

Herein, we have presented the results of Density Functional Theory (DFT) based calculations of inclusion complexes of lapatinib and dasatinib with calix[n]arene macrocycles. A total of 48 calix [n]arene complexes were modeled via considering varied ring sizes (n = 4,5,6,8) and upper-rim functionalization viz. SO3H, tert-Butyl, iso-Propyl, COOH, C2H5OH, and C2H5NH2. From the results of multilevel molecular docking, DFT energetics, and reactivity descriptors; it has been demonstrated that dasatinib form optimal complexes with calix 4f, 3f (−35 to −40 kcal/mol). Moreover, for lapatinib, hosts 3f, 4a, 1f, 3d have the capability to generate promising complexes (>35 kcal/mol). Based on counterpoise corrected binding energies (Ebind) and global reactivity descriptors, we anticipate that the proposed complexes can vitally be used as analogous to carrier-mediated-drug-delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.