Abstract

Assuming aromaticity (cyclic continuous conjugation, planarity, and obeying the Huckel 4n + 2 rule), effects of one and two fused six-membered heterocyclic rings are investigated on the energy lowering (stabilization) of 22 novel singlet (s) and triplet (t) carbenes, at B3LYP/AUG-cc-pVTZ and M06-2X/AUG-cc-pVTZ. Results display that (1) exclusive of triplet pyridine-4-ylidene, and s and t states, other species appear as ground state, so every s Hammick carbene exhibits more stability than its corresponding t state; (2) the highest stability is demonstrated by unsubstituted pyridine-4-ylidene as reference carbene, and the lowest stability is shown by carbene situated between two nitrogen heteroatoms of two fused rings, in a “W” arrangement; (3) regarding the relationship between carbenic center (CC) and substituted heteroatom, the order of stabilization for fused rings is meta > para > ortho; (4) regardless of how organized, fusion of one six-membered ring, in a given arrangement, has more stabilizing effect than two six-membered rings; (5) contrary to our expectation, t Hammick carbenes show higher band gap (ΔEHOMO-LUMO) than their corresponding s species; (6) based on the NICS (nuclear independent chemical shift) results, the least stable carbene has the most aromaticity in its pyridine ring; and (7) according to proposed homomolecular isodesmotic reactions, all s states are stabilized via π-donor/σ-acceptor substitution more than the t states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call