Abstract

In the present contribution, a density functional theory (DFT) investigation is described regarding a recently synthesized Fe6S6 complex – see C. Tard, X. Liu, S.K. Ibrahim, M. Bruschi, L. De Gioia, S.C. Davies, X. Yang, L.-S. Wang, G. Sawers, C.J. Pickett, Nature 433 (2005) 610 – that is structurally and functionally related to the [FeFe]-hydrogenases active site (the so-called H-cluster, which includes a binuclear subsite directly involved in catalysis and an Fe4S4 cubane). The analysis of relative stabilities and atomic charges of different isomers evidenced that the structural and redox properties of the synthetic assembly are significantly different from those of the enzyme active site. A comparison between the hexanuclear cluster and simpler synthetic diiron models is also described; the results of such a comparison indicated that the cubane moiety can favour the stabilization of the cluster in a structure closely resembling the H-cluster geometry when the synthetic Fe6S6 complex is in its dianionic state. However, the opposite effect is observed when the synthetic cluster is in its monoanionic form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.