Abstract

An examination was conducted on the electronic and optical characteristics of gas (H2S, CO2, CO, SO2, and SO) adsorption on a monolayer of InP using first-principles calculations based on DFT. To identify the optimal and most sensitive adsorption site for the adsorbed gases, four initial adsorption sites were selected. Various aspects such as adsorption distance, charge densities, and adsorption energy were analyzed across different types of adsorption to determine the most favorable adsorption configurations. Our research indicates that InP monolayers can chemically adsorb CO2, CO, SO2, and SO, forming new bonds with these gas molecules. Furthermore, H2S can be physically absorbed onto InP with a high level of adsorption energy. The optical findings reveal that the presence of gas molecules alters the conductivity and optical properties of the InP monolayer, especially noticeable in the UV range. InP emerges as a suitable material for detecting CO2, CO, SO2, and SO due to its distinct characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.