Abstract
Is there late maturation of skill learning? This notion has been raised to explain an adult advantage in learning a variety of tasks, such as auditory temporal-interval discrimination, locomotion adaptation, and drawing visually-distorted spatial patterns (mirror-drawing, MD). Here, we test this assertion by following the practice of the MD task in two 5 min daily sessions separated by a 10 min break, over the course of 2 days, in 5–6-year-old kindergarten children, 7–8-year-old second-graders, and young adults. In the MD task, participants were required to trace a square while looking at their hand only as a reflection in a mirror. Kindergarteners did not show learning of the visual-motor mapping, and on average, did not produce even one full side of a square correctly. Second-graders showed increased online movement control with longer strokes, and robust learning of the visual-motor mapping, resulting in a between-day increase in the number of correctly drawn sides with no loss in accuracy. Overall, kindergarteners and second-graders producing at least one correct polygon-side on Day 1 were more likely to improve their performance between days. Adults showed better performance with improvements in the number of correctly drawn sides between- and within-days, and in accuracy between days. It has been suggested that 5-year-olds cannot learn the task due to their inability to detect and encapsulate previously produced accurate movements. Our findings suggest, instead, that these children lacked initial, accurate performance that could be enhanced through training. Recently, it has been shown that in a simple grapho-motor task the three age-groups improved their speed of performance within a session and between-days, while maintaining accuracy scores. Taken together, these data suggest that children’s motor skill learning depends on the task’s characteristics and their adopting an efficient and mature performance strategy enabling initial success that can be improved through training.
Highlights
Children are often thought to have superior skill learning abilities compared with adults
The 2 (Day) × 2 (Session) × 3 (Group) rmANOVA pertaining to the number of correct polygon-sides indicated a main effect of Group F(2,55) = 117.27, p < 0.001, η2 = 0.81, and a main effect of Day F(1,55) = 32.71, p < 0.001, ηp2 = 0.37, modulated by a Group × Day interaction F(2,55) = 17.03, p < 0.001, ηp2 = 0.38
The rmANOVA further indicated a main effect of Session F(1,55) = 61.62, p < 0.001, ηp2 = 0.53, that was modulated by a Group × Session interaction F(2,55) = 46.23, p < 0.001, ηp2 = 0.63
Summary
Children are often thought to have superior skill learning abilities compared with adults This notion has been invoked in relation to ‘‘critical’’ early life periods in several domains (e.g., language, Johnson and Newport, 1989; visual stereopsis, Blake and Hirsch, 1975; Packwood and Gordon, 1975). Some studies support this notion (e.g., performance of older children vs adults on the probabilistic sequence learning task, Fischer et al, 2007; Janacsek et al, 2012; Nemeth et al, 2013). One of the tasks young children failed to learn was the MD task (Ferrel-Chapus et al, 2002)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.