Abstract

The anode subsystem of PEM fuel cells has to supply hydrogen in the required temperature, pressure, mass flow and concentration range under all operating conditions. At present, several components such as valves, sensors and a recirculation pump/blower (active recirculation) secure the supply, which consumes a significant amount of energy and reduces the overall efficiency. Passive recirculation with a pulsed injector-ejector unit is a promising approach to guarantee the required supply while maintaining low energy consumption. However, high development efforts are necessary to design and optimize an injector-ejector for the entire operating range. This paper proposes a novel development toolchain consisting of simulation models and experimental validation. In addition, simulation and measurement results are within a 2% accuracy for the stoichiometric ratio at nominal power. Further, the results show that recirculation covers the entire operating range. This toolchain enables accurate design and optimization of injector-ejector units saving development time and costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.