Abstract

One of the areas that have challenges in the use of internet of things (IoT) is the field of tourism and travel. The issue here is how to employ this technology to serve the tourism and managing the produced data. This work is focus on the use of tourists' trajectories that are collected from global positioning system (GPS) mobile sensors as a source of information. The aim of work is to predict preferred tourism places for tourists by tracking tourists' behavior to extract the tourism places that have been visited by such tourists. Density based clustering algorithm is mainly used to extract stay points and point of interest (POI). By projecting GPS location (for user and places) on the Google map, the type and name of places favored by the tourists are determined. K nearest neighbor (KNN) algorithm with haversine distance has been adopted to find the nearest places for tourists. The evaluation of the obtained results shows superior and satisfactory performance that can reach the objective behind this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.