Abstract

Atmospheric turbulence is one of the main issues causing image blurring, dithering, and other degradation problems when detecting targets over long distances. Due to the randomness of turbulence, degraded images are hard to restore directly using traditional methods. With the rapid development of deep learning, blurred images can be restored correctly and directly by establishing a nonlinear mapping relationship between the degraded and initial objects based on neural networks. These data-driven end-to-end neural networks offer advantages in turbulence image reconstruction due to their real-time properties and simplified optical systems. In this paper, inspired by the connection between the turbulence phase diagram characteristics and the attentional mechanisms for neural networks, we propose a new deep neural network called DeturNet to enhance the network’s performance and improve the quality of image reconstruction results. DeturNet employs global information aggregation operations and amplifies notable cross-dimensional reception regions, thereby contributing to the recovery of turbulence-degraded images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.