Abstract

Experiments conducted over the past several decades have shown that the cellular structure of detonations is responsible for enhancing the detonability of gaseous detonations in the presence of losses, as compared with that predicted by the classical Zel’dovich-Von Neuman-Döring model for detonations, which neglects the time varying cellular structure of the front. Paradoxically, numerical studies conducted over the past decade have revealed that the propagation of inviscid detonations was hampered if the detonation was allowed to have a cellular structure, the effect increasing with the cellular irregularity. This apparent paradox is discussed in relation to the burning mechanism of unstable cellular detonations established experimentally, which shows that diffusive effects control the reaction of approximately half of the gases passing across the detonation front in unstable cellular detonations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.