Abstract

We study the problem of estimating the best B term Fourier representation for a given frequency-sparse signal (i.e., vector) A of length N G B. More precisely, we investigate how to deterministically identify B of the largest magnitude frequencies of Â, and estimate their coefficients, in polynomial (B, log N) time. Randomized sub-linear time algorithms, which have a small (controllable) probability of failure for each processed signal, exist for solving this problem. However, for failure intolerant applications such as those involving mission-critical hardware designed to process many signals over a long lifetime, deterministic algorithms with no probability of failure are highly desirable. In this paper we build on the deterministic Compressed Sensing results of Cormode and Muthukrishnan (CM) [26, 6, 7] in order to develop the first known deterministic sub-linear time sparse Fourier Transform algorithm suitable for failure intolerant applications. Furthermore, in the process of developing our new Fourier algorithm, we present a simplified deterministic Compressed Sensing algorithm which improves on CM's algebraic compressibility results while simultaneously maintaining their results concerning exponential decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.