Abstract

The sum of linear fractional functions problem has attracted the interest of researchers and practitioners for a number of years. Since these types of optimization problems are non-convex, various specialized algorithms have been proposed for globally solving these problems. However, these algorithms are only for the case that sum of linear ratios problem without coefficients, and may be difficult to be solved. In this paper, a deterministic algorithm is proposed for globally solving the sum of linear fractional functions problem with coefficients. By utilizing an equivalent problem and linear relaxation technique, the initial non-convex programming problem is reduced to a sequence of linear relaxation programming problems. The proposed algorithm is convergent to the global optimal solution by means of the subsequent solutions of a series of linear programming problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.