Abstract

The YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect is one of the mechanisms of the long-term dynamical evolution of asteroids. Compared with factors such as collision and gravitational perturbation, the YORP is of small magnitude, and the short-time scale observation effect is inconspicuous, which brings great difficulties to the direct measurement of the YORP. From the Asteroid Lightcurve Database, asteroids having a high confidence rotation period were selected for this study. Two subsample groups for identifying potential asteroids slowed by the YORP effect are provided by using the kernel density estimation method and the Kolmogorov-Smirnov test to analyze the rotation rate distribution characteristics of near-Earth asteroids and main belt asteroids; a screening model is proposed based on the light-curve data of seven YORP asteroids with YORP rotation acceleration, combined with the YORP intensity estimation method and the detection conditions of the YORP effect. Finally, ten candidates that can directly detect the YORP effect through light-curve data in the future are listed based on the screening model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call