Abstract

We have studied 4265 giant pulses (GPs) from the millisecond pulsar B1937+21; the largest-ever sample gathered for this pulsar, in observations made with the Large European Array for Pulsars. The pulse energy distribution of GPs associated with the interpulse are well-described by a power law, with index $\alpha = -3.99 \pm 0.04$, while those associated with the main pulse are best-described by a broken power law, with the break occurring at $\sim7$ Jy $\mu$s, with power law indices $\alpha_{\text{low}} = -3.48 \pm 0.04$ and $\alpha_{\text{high}} = -2.10 \pm 0.09$. The modulation indices of the GP emission are measured, which are found to vary by $\sim0.5$ at pulse phases close to the centre of the GP phase distributions. We find the frequency-resolved structure of GPs to vary significantly, and in a manner that cannot be attributed to the interstellar medium influence on the observed pulses. We examine the distribution of polarisation fractions of the GPs and find no correlation between GP emission phase and fractional polarisation. We use the GPs to time PSR B1937+21 and although the achievable time of arrival precision of the GPs is approximately a factor of two greater than that of the average pulse profile, there is a negligible difference in the precision of the overall timing solution when using the GPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.