Abstract

We present numerical simulations of a 15 M⊙ star in a suite of idealized environments in order to quantify the amount of energy transmitted to the interstellar medium (ISM). We include models of stellar winds, UV photoionization and the subsequent supernova based on theoretical models and observations of stellar evolution. The system is simulated in 3D using ramses-rt, an Adaptive Mesh Refinement Radiation Hydrodynamics code. We find that stellar winds have a negligible impact on the system owing to their relatively low luminosity compared to the other processes. The main impact of photoionization is to reduce the density of the medium into which the supernova explodes, reducing the rate of radiative cooling of the subsequent supernova. Finally, we present a grid of models quantifying the energy and momentum of the system that can be used to motivate simulations of feedback in the ISM unable to fully resolve the processes discussed in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call