Abstract

Sparse-Lagrangian filtered density function (FDF) simulations using a generalized multiple mapping conditioning mixing model and density coupling via a conditional form of the equivalent enthalpy method are performed for both constant density and variable density turbulent jet diffusion flames. The consistency between the sparse-Lagrangian FDF for the reactive species and the Eulerian large eddy simulation (LES) for velocity along with the accuracy of the reactive species predictions relative to the exact equilibrium solution are presented in detail. The sensitivity to the number of particles used in the simulations, the mixing localization structure, chemistry and numerical time step are all investigated. The analysis shows that consistency between the FDF and LES fields is relatively insensitive to the sparseness of the particle distributions and other model parameters but that the reactive species are strongly dependent on the degree of mixing localization in the LES mixture fraction space. An algorithm is developed to control the localization for any sparse distribution of particles with inter-particle distances within the inertial range, and it is shown that reactive species predictions are sensitive to the mixing distance in a reference mixture fraction space while there is very low sensitivity to the number of particles used in the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.