Abstract
This study investigated the detailed geomagnetic field variation between 2.1 and 2.75 Ma from a sediment core (IODP Site U1314) with high sedimentation rate (≥10 cm/kyr) and good age control. Characteristic remanent magnetization directions were well resolved by stepwise alternating field demagnetization. As a proxy of relative paleointensity, natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization (ARM) was used after testing that the influence of magnetic interaction in ARM is negligible. As a result, the following features of the geomagnetic field in the studied period have been revealed. During the transition of the Gauss‐Matuyama (G‐M) reversal and the Réunion Subchron, the paleointensity decreased to the value lower than 20% of the average intensity in the whole studied interval. In addition to these lows, eight paleointensity lows were found associated with large directional changes that satisfy the definition of a geomagnetic excursion. Four of these have ages close to ages reported for geomagnetic excursions in prior studies, whereas the other four excursions have not previously been observed. In our results, we confirm that the G‐M transition occurred in marine isotope stage 103 even if we consider the shift in depth due to the lock‐in process of magnetic particles. The temporal variation in paleointensity showed asymmetric behavior associated with the G‐M transition, with a gradual decrease prior to the transition and a rapid recovery after the transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.