Abstract

A Lewis acid complex between benzaldehyde and the silver catalyst was detected by (31)P NMR and shown to be the direct precursor to allylation within the Sakurai-Hosomi-Yamamoto reaction. Structural and thermochemical hybrid-DFT calculations indicated that benzaldehyde predominantly formed an η(1)-σ-complex with the catalyst; however, two other competing conformers involving different coordination modes were found, including an activated μ(2)-bound complex. The differences in (31)P NMR shifts upon complexation were calculated by the gauge-independent atomic orbital (GIAO-DFT) method for each conformer. The minimum energy conformer was found to correlate well with chemical shift trends observed experimentally, and an analysis of Mullikan charge populations revealed that the carbonyl carbon of the highest-energy conformer was the most electron-deficient. Furthermore, one minor and three major silicon intermediates were detected by (29)Si NMR and, with the aid of (1)H-(29)Si HSQC, were assigned by comparison with parent compounds and GIAO-DFT calculations. Finally, a tentative mechanism was proposed based on these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.