Abstract

The purpose of this study was to investigate the taxonomic diversity, richness, and distribution patterns of Poaceae in relation to abiotic factors in the Jhelum district of the Pakistan Himalayas. We used a random sampling technique from 80 grids within 240 sites with a rich diversity of wild grasses and 720 quadrates in triplets from each site across the Jhelum district between 2019 and 2021 to collect data on grass species and the associated environmental factors and conditions. After evaluating the important value index for each plant taxa and for the environmental data, we analyzed the data using ordination and cluster analysis techniques. Fifty-two Poaceae taxa from twenty-nine genera were recorded within the study area. From a total of 52 recorded Poaceae species, 45 were native and 7 were invasive species. The life form (biological) showed the dominancy of 27 therophyte species, followed by 24 hemicryptophyte species, and 1 geophyte species. Microphyll had the leading leaf size spectra (27 species), followed by nanophyll (12 species), macrophyll (10 species), and leptophyll (3 species). The trend of the life cycle was the maximum (27 spp.) during the monsoon season, followed by spring (11 spp.), winter (8 spp.), and summer (6 spp.). The leading genera were Setaria with 9.61% of the species, followed by Panicum, Cenchrus, and Brachiaria with 7.69% of the species. Aristida and Echinochloa made up 5.76% of the species while Chrysopogon, Digitaria, Eragrostis, Pennisetum, and Poa made up 3.84% of the species. Other genera recorded single species. The leaf size spectra of grasses were dominated by microphylls (50%) followed by nanophylls (23.07%), macrophylls (19.23%), and leptophylls (7.69%). On the basis of the importance value index, the most dominant species was Cynodon dactylon (68), followed by Dichanthium annulatum (58), Brachiaria ramose (38), Dactyloctenium aegyptium (37), Eleusine indica (35), Saccharum bengalense (33), and Cenchrus biflorus (28). Two-way cluster analyses classified the grasses into three plant community associations based on the indicator plant species. Soil parameters as subsamples were tested for moisture, pH, EC, OM, macronutrients (CaCO3, N, P, and K), and saturation while the ordination analysis revealed that they had a significant (p ≤ 0.002) effect on vegetation associations. Overall, this study contributes to a better understanding of the influence of environmental factors on the composition and associations of grass species and the development of scientifically informed management solutions for the ecological restoration of degraded habitats in this Himalayan region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call