Abstract
Indium was analyzed with both, standard differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC) using sinusoidal and saw-tooth modulation. Instrument and sample effects were separated during nucleated, reversible melting and crystallization transitions, and irreversible crystallization with supercooling. The changes in heat flow, time, and sample and reference temperatures were correlated as functions of heating rate, mass, and modulation parameters. The transitions involve three regions of steady state (an initial and a final region before and after melting/crystallization, a region while melting/crystallization is in progress) and one region of approach to steady state (melting peak to final steady state region). Analyses in the time domain show promise when instrument lags, known from DSC, are used for correction of TMDSC. A new method of integral analysis is introduced for quantitative analysis even when irreversible processes occur in addition to reversible transitions. The information was derived from heat-flux calorimeters with control at the heater block or at the reference temperature sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.